If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-32=48t-16t^2
We move all terms to the left:
-32-(48t-16t^2)=0
We get rid of parentheses
16t^2-48t-32=0
a = 16; b = -48; c = -32;
Δ = b2-4ac
Δ = -482-4·16·(-32)
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{17}}{2*16}=\frac{48-16\sqrt{17}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{17}}{2*16}=\frac{48+16\sqrt{17}}{32} $
| x/9=13=141/3 | | 8t=-36 | | 7k+5-3k=-28 | | 7x-10=9x+7 | | 42=2πr | | -20=3+5(b-6) | | x+5x+9=x-4x+18 | | 4*(x+7)=20 | | x÷-7-9=-7 | | -u/2=26 | | (1-v)(4v-6)=0 | | -56=w/5 | | -2a+44+9a=3a-7a | | 5x-4=22-x | | 20=-7(2a+4) | | X+7/14=1/7+x-1/9 | | (1*y-5*1)/3*1=5y | | 7x/35+17-6=18 | | 9y+13=4y-2 | | 7w(2+3)=14w+20 | | 4(x+4)/8=2x+1 | | -8-x=25 | | -2(6y-5)=30+3y | | X+2/8=1-x+6/3 | | 7(2+3w)=14w+20 | | w+1.8=5.71 | | w-2.57=6.82 | | 9x=20x-10 | | 4z-8z=-19 | | u+6.2=9.88 | | (4-u)(4u-2)=0 | | 6n^2+n-26=0 |